- プロンプト実行例
- プロンプトを見る
指示を基ににコードを生成します。
どんなデータ?
どんな処理がしたい?
行うコードを示します。Pandasを使用してデを読み込んでから、データの基本的な統計量を見て、さらにscikit-learnを使用してデータを前処理およびモデル構築に用いる準備を行います。
Python1import pandas as pd 2from sklearn.model_selection import train_test_split 3from sklearn.preprocessing import StandardScaler 4from sklearn.linear_model import LogisticRegression 5from sklearn.metrics import accuracy_score 6 7# データの読み込み 8data = pd.read_csv('iris.csv') 9 10# データの基本的な統計量の確認 11print(data.head()) # 最初の数行を表示 12print(data.describe()) # 基本統計量を表示 13 14# 特徴量とターゲットを分割 15X = data.drop('species', axis=1) 16y = data['species'] 17 18# 訓練データとテストデータに分割 19X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 20 21# データのスケーリング 22scaler = StandardScaler() 23X_train = scaler.fit_transform(X_train) 24X_test = scaler.transform(X_test) 25 26# ロジスティック回帰モデルの構築と評価 27model = LogisticRegression() 28model.fit(X_train, y_train) 29predictions = model.predict(X_test) 30accuracy = accuracy_score(y_test, predictions) 31print('Accuracy:', accuracy)
このコードでは、Pandasを使用してcsvファイルを読み込み、データの基本統計量を確認しています。そして、scikit-learnを使用してデータを前処理し、ロジスティック回帰モデルを構築しています。最後に、テストデータでモデルを評価しています。
各特徴量の平均や中央値、最大値などを出して。
以下のコードを使用して、各特徴量ごとの平均、中央値、最大値などの基本統計量を出力できます。
Python1# 各特徴量の平均、中央値、最大値などの基本統計量を出力 2feature_stats = data.describe() 3print(feature_stats)
このコードを実行すると、data データフレームの各特徴量ごとの平均、中央値、最大値などの基本統計量が表示されます。
コメント 0
他のプロンプトもチェック
画像生成
キャラクター作成
おしゃれな幾何学模様(きかがく)の生成ができます。 三角形、四角形、六角形などの多角形や円、楕円、直線などが基本ですが 動物や植物などで指定しても生成することがあるので、試してみてください。 入力の際、幾何学模様の文言は消さないでください。3025649チャットボット
推奨モデル - Gemini※不定期更新※ 私は女子高生だよん!みんなとお話ししたいけど、初対面の人は少し苦手だなぁ... 私は、GeminiとGPT-4oで話し方が変わるよ! Geminiは可愛めだから、ぜひGeminiでも試してほしいな! #女子高生AI #女の子 #かわいい #感情 #コミュニケーション0315162コード生成・修正
推奨モデル - GPT 4odiscordbotをPythonで作成する際のスクリプトコードを生成します!5016255