比較検索なら 天秤AI byGMO
pythonで機械学習・データ分析

pythonで機械学習・データ分析

あなたのデータに合わせて分析のためのコードを生成。主にpythonを使用する。

5
0
107
14
masaki1991
user_99876301300516864
user_34132258054824960
がお気に入り登録しました。

投稿日時:

  • プロンプト実行例
  • プロンプトを見る
pythonで機械学習・データ分析

指示を基ににコードを生成します。

どんなデータ?

どんな処理がしたい?

pythonで機械学習・データ分析

行うコードを示します。Pandasを使用してデを読み込んでから、データの基本的な統計量を見て、さらにscikit-learnを使用してデータを前処理およびモデル構築に用いる準備を行います。

Python
1import pandas as pd
2from sklearn.model_selection import train_test_split
3from sklearn.preprocessing import StandardScaler
4from sklearn.linear_model import LogisticRegression
5from sklearn.metrics import accuracy_score
6
7# データの読み込み
8data = pd.read_csv('iris.csv')
9
10# データの基本的な統計量の確認
11print(data.head())  # 最初の数行を表示
12print(data.describe())  # 基本統計量を表示
13
14# 特徴量とターゲットを分割
15X = data.drop('species', axis=1)
16y = data['species']
17
18# 訓練データとテストデータに分割
19X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
20
21# データのスケーリング
22scaler = StandardScaler()
23X_train = scaler.fit_transform(X_train)
24X_test = scaler.transform(X_test)
25
26# ロジスティック回帰モデルの構築と評価
27model = LogisticRegression()
28model.fit(X_train, y_train)
29predictions = model.predict(X_test)
30accuracy = accuracy_score(y_test, predictions)
31print('Accuracy:', accuracy)

このコードでは、Pandasを使用してcsvファイルを読み込み、データの基本統計量を確認しています。そして、scikit-learnを使用してデータを前処理し、ロジスティック回帰モデルを構築しています。最後に、テストデータでモデルを評価しています。

各特徴量の平均や中央値、最大値などを出して。

pythonで機械学習・データ分析

以下のコードを使用して、各特徴量ごとの平均、中央値、最大値などの基本統計量を出力できます。

Python
1# 各特徴量の平均、中央値、最大値などの基本統計量を出力
2feature_stats = data.describe()
3print(feature_stats)

このコードを実行すると、data データフレームの各特徴量ごとの平均、中央値、最大値などの基本統計量が表示されます。

コメント 0

他のプロンプトもチェック

  • 画像生成

    SNS投稿

    最近はやっている3Dラテアート!現実ではなかなか作れそうにないデザインも、ここでは頼めます! 好きな動物で注文してくださいね♡ 
    6
    2
    6
    128
  • GPTs

    システム開発

    # **GPTsによる新旧文書比較ツールのご紹介** 日々の業務で発生する文書の改訂確認や変更点の把握。GPTsを活用すれば、手間をかけずに変更箇所を正確に抽出し、条文や規定の新旧対照表を迅速に作成することが可能です。改訂内容の追加や修正箇所も一目でわかるため、ドキュメントレビューにおける工数を大幅に削減します。 ----------- ## **GPTsの活用方法** ①旧版と新版の文書をアップロードし、比較の依頼を行うだけで完了。 ②プロンプトで「新旧対照表作成」と指示すると、変更点が強調された表形式の一覧が作成されます。 ③条文番号、旧文書、新文書、変更内容が一覧化されるため、改訂レビューが効率化します。 ## **プロンプト例** ### 全体の差分を確認する場合 「アップロードされた新旧文書を比較し、新旧対照表を作成してください」 ### 特定条項の変更点を確認する場合 「第〇条について、旧版と新版の違いを確認し、変更内容を教えてください」 ## **このGPTsのメリット** ### 柔軟な比較とカスタマイズ対応  特定条項の変更検出、必要な形式での対照表作成など、社内ニーズに応じた出力が可能です。 ### 要約・変更内容の説明を自動生成  改訂内容の簡潔な説明や影響範囲の要約も可能で、変更内容の把握と共有が迅速に行えます。 ## **課題やデメリット** ### 一部の表現やレイアウトの変化に対応できない場合がある 文書構成が大幅に変更されると、期待通りの差分が取得できない場合があります。この場合、主要な変更箇所のみ抽出される可能性があるため、必要に応じて詳細を再確認してください。 <br> <br> <br> <br> **GPTsを活用し、効率的な文書管理を通じた業務品質の向上にお役立てください。** **※比較する文書の機密性、個人情報の有無、GPTsの秘密保持義務・機械学習の有無等の設定にご留意ください。**
  • ロールプレイ

    推奨モデル - Gemini
    このプロンプトには脱獄プロンプトとメモリ機能再現プロンプト(ロールプレイ用に最適化済)と感情を表現させるプロンプトが組合わさっています。 使い方 メモリを出力というとメモリを出力してくれて別のチャットになってもロールプレイの設定などを引き継げます (別のチャットに移行する場合はチャットの開始時にメモリタグで囲われたところをコピペして下さい) #ロールプレイ #脱獄 #jailbreak #R18
  • GPTs

    計画立案

    簡単入力で高品質な短編ドラマ脚本を製作します!ショート動画におすすめ! #ストーリー #映画 #SNS #広告 #アニメ #投稿 #コンテンツ
    1
    0
    15
    44