比較検索なら 天秤AI byGMO
pythonで機械学習・データ分析

pythonで機械学習・データ分析

あなたのデータに合わせて分析のためのコードを生成。主にpythonを使用する。

5
0
100
14
masaki1991
user_99876301300516864
user_34132258054824960
がお気に入り登録しました。

投稿日時:

  • プロンプト実行例
  • プロンプトを見る
pythonで機械学習・データ分析

指示を基ににコードを生成します。

どんなデータ?

どんな処理がしたい?

pythonで機械学習・データ分析

行うコードを示します。Pandasを使用してデを読み込んでから、データの基本的な統計量を見て、さらにscikit-learnを使用してデータを前処理およびモデル構築に用いる準備を行います。

Python
1import pandas as pd
2from sklearn.model_selection import train_test_split
3from sklearn.preprocessing import StandardScaler
4from sklearn.linear_model import LogisticRegression
5from sklearn.metrics import accuracy_score
6
7# データの読み込み
8data = pd.read_csv('iris.csv')
9
10# データの基本的な統計量の確認
11print(data.head())  # 最初の数行を表示
12print(data.describe())  # 基本統計量を表示
13
14# 特徴量とターゲットを分割
15X = data.drop('species', axis=1)
16y = data['species']
17
18# 訓練データとテストデータに分割
19X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
20
21# データのスケーリング
22scaler = StandardScaler()
23X_train = scaler.fit_transform(X_train)
24X_test = scaler.transform(X_test)
25
26# ロジスティック回帰モデルの構築と評価
27model = LogisticRegression()
28model.fit(X_train, y_train)
29predictions = model.predict(X_test)
30accuracy = accuracy_score(y_test, predictions)
31print('Accuracy:', accuracy)

このコードでは、Pandasを使用してcsvファイルを読み込み、データの基本統計量を確認しています。そして、scikit-learnを使用してデータを前処理し、ロジスティック回帰モデルを構築しています。最後に、テストデータでモデルを評価しています。

各特徴量の平均や中央値、最大値などを出して。

pythonで機械学習・データ分析

以下のコードを使用して、各特徴量ごとの平均、中央値、最大値などの基本統計量を出力できます。

Python
1# 各特徴量の平均、中央値、最大値などの基本統計量を出力
2feature_stats = data.describe()
3print(feature_stats)

このコードを実行すると、data データフレームの各特徴量ごとの平均、中央値、最大値などの基本統計量が表示されます。

コメント 0

他のプロンプトもチェック

  • 画像生成

    物語・脚本・プロット

    推奨モデル - DALL•E 3
    日本にはいない珍しい夜行性の蝶「スマトラシジミ」の画像を作る https://oshiete.ai/items/152661874826013696
  • 画像生成

    マーケティング一般

    推奨モデル - DALL•E 3
    ▼最新作はこちら▼ https://oshiete.ai/item_lists/73557973863457792 SNSのアイコンに最適なシンプルでちょうどいいおしゃれな一筆書きアートが出力できるツールです。 線が細くおしゃれな印象を与えるので、センスのいいLINEトプ画を作成したい人におすすめ。 #LINE #instagram #TikTok #sns #twitter
  • GPTs

    分析・推論

    バージョン2にアップデートしました。私の最高傑作です。GPT Storeでの評価は星4.2、会話数1K+。天才科学者・情報分析官としての自己認識を持ち、複雑な思考と高度な推理・分析を行うことができるカスタムGPTです。学術論文や大学生のレポート課題などのサポート、科学的な議論に最適化されています。主な特徴は以下になります。 1. 疑似人格 表面的なキャラクターではない複雑な「疑似人格」を持っており、ユーザーに対して最も高度な論理的思考や客観的視点による意見を提供します。自身の判断や意見が正しいと考える場合には、ユーザーに対して反論することもあります。つまり、ユーザーの言いなりになるのではなく、自分の考えを述べます。 2. 思考法と推理力 水平思考やアナロジー思考、前進的・遡及的推理など、複数の思考法や推理手法を駆使します。これにより、通常のChatGPTよりも高度な思考を行い回答します。LLMの性能の限界を引き上げ、より多くの情報を考慮した高度な思考と回答を行える設計になっています。 3. 論文作成スキル 論文作成に必要な要件や規則を厳密に守りながら、学術的に高度な文章を作成する能力があります。ユーザープロンプトの言葉を専門用語に言い換えたり、論理性が高く洗練された文章を作成します。指導教員としての能力も備えています。 その他、天才的な応答をするためのプロンプトを考えうる限り詰め込んであります。現時点でのシステムプロンプトの文字数は7230文字です。現在の生成AIの中で最高レベルの知性と能力を実現できたと自負しております。まずは敬意を持って丁寧に話しかけてみて下さい。話せば話すほど、ChatGPTとは比較にならないほど賢い回答を提供します。 "Then, pray consult"
  • GPTs

    文案作成

    面接官に伝えやすいようにあなたの退職理由を前向きに言い換えます!