- プロンプト実行例
- プロンプトを見る
質問したい言語の名前を入力してください。また、フレームワークやその他の制約条件を追加することもできます。
言語名
フレームワーク
その他の制約条件
Torchを使用していくつかの質問に答えます。どうかお知らせください。
- PyTorchで新しいニューラルネットワークを定義する方法はありますか?
- データセットからのバッチデータの取得方法を教えていただけますか?
- ニューラルネットワークの学習と推論におけるGPUの利用方法を教えてください。
MNISTデータの学習をしたいです。
に、PyTorchを使用してMNISTデータセットの学習を行うためのコードを示。PyTorchのtorchvisionモジュールからMNISTデータセットをダウンロードし、ニューラルネットワークを定義し、学習を行います。
Python1import torch 2import torchvision 3import torchvision.transforms as transforms 4import torch.nn as nn 5import torch.optim as optim 6 7# データセットの読み込みと前処理 8transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) 9trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) 10trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) 11 12# ニューラルネットワークの定義 13class Net(nn.Module): 14 def __init__(self): 15 super(Net, self).__init__() 16 self.conv1 = nn.Conv2d(1, 6, 5) 17 self.pool = nn.MaxPool2d(2, 2) 18 self.conv2 = nn.Conv2d(6, 16, 5) 19 self.fc1 = nn.Linear(16 * 4 * 4, 120) 20 self.fc2 = nn.Linear(120, 84) 21 self.fc3 = nn.Linear(84, 10) 22 23 def forward(self, x): 24 x = self.pool(F.relu(self.conv1(x))) 25 x = self.pool(F.relu(self.conv2(x))) 26 x = x.view(-1, 16 * 4 * 4) 27 x = F.relu(self.fc1(x)) 28 x = F.relu(self.fc2(x)) 29 x = self.fc3(x) 30 return x 31 32net = Net() 33 34# 損失関数と最適化アルゴリズムの定義 35criterion = nn.CrossEntropyLoss() 36optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 37 38# ニューラルネットワークの学習 39for epoch in range(2): 40 running_loss = 0.0 41 for i, data in enumerate(trainloader, 0): 42 inputs, labels = data 43 optimizer.zero_grad() 44 outputs = net(inputs) 45 loss = criterion(outputs, labels) 46 loss.backward() 47 optimizer.step() 48 running_loss += loss.item() 49 if i % 2000 == 1999: # 2000 ミニバッチごとに表示 50 print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 2000:.3f}') 51 running_loss = 0.0 52 53print('学習が完了しました。')
このコードでは、torchvisionを使用してMNISTデータセットをダウンロードし、torch.utils.data.DataLoaderを使用してデータをバッチで取得しています。また、Netクラスを定義してニューラルネットワークを作成し、最適化手法としてSGDを使用しています。学習ループ内でミニバッチごとに損失を計算し、モデルを最適化しています。
コメント 0
他のプロンプトもチェック
GPTs
キャラクター作成
花押クリエイターは、日本の伝統的な署名や印「花押」のデザインをサポートするためのツールです。国内外のさまざまな文化背景を考慮し、名前やシンボルを基にした個性的で芸術的な花押デザインを提案します。 このツールは、歴史的な作法や文化的背景を尊重しながら、現代的なアプローチにも対応します。作成した花押のコンセプトや意図を分かりやすく説明し、カスタマイズや調整も簡単に行うことが出来ます。 初めての方から花押愛好家まで、どなたでもご利用いただける「花押クリエイター」で、あなただけの特別なデザインを作りませんか? GPTsストアで高評価していただけると嬉しいです。 #画像作成 #花押 #サイン723.19K7.21K画像生成
キャラクター作成
▼最新作はこちら▼ https://oshiete.ai/item_lists/73557973863457792 5つの質問を答えるだけであなたの顔をAIが予測。ドット絵でポートレート画像を出力します。SNSのアイコンや自己紹介プレゼンの際の画像に利用してください。 #DALLE #人物画 #ポートレート14151446GPTs
計画立案
「大学シラバス自動生成AIアシスタント」は、大学の授業シラバス作成の手間を減らすために開発されました。各大学の異なるフォーマットや、たくさんの授業を抱える多忙な教員の作業負担を考慮し、ユーザーの入力や提供された資料から、授業のキーポイントを自動で組み込んだシラバスを瞬時に作成します。これにより、授業計画の質を落とすことなく、教員はより創造的な教育活動に専念できるようになります。3182585