比較検索なら 天秤AI byGMO
成果を最大化させるための「数式プロンプト」 "GPT4必須”

成果を最大化させるための「数式プロンプト」 "GPT4必須”

プロジェクトのアウトプットは、インスピレーション、経験知識、アイデア選択の積に指数関数をかけ、認知決定、データ決定、パレート最適化の総和を実行ステップにわたって積分し、コンバージェンスターゲットを乗じたものです。そして、機能成分と状態成分のテンソル積の総和を乗じます。この式は、プロジェクトの成果を評価するためのモデルを表していると解釈できます。各変数や関数は、プロジェクトの特定の側面を象徴しており、全体としてプロジェクトの成功を定量化するために使用されます。具体的な文脈やパラメータに応じて、このモデルはさまざまな方法で適用される可能性があります。

4
0
156
22
user_165542008062445568
hirokaji
Ci7mon
がお気に入り登録しました。

投稿日時:

  • プロンプト実行例
  • プロンプトを見る
成果を最大化させるための「数式プロンプト」 "GPT4必須”

【GPT4】を選択後、このまま送信↓

変数1

成果を最大化させるための「数式プロンプト」 "GPT4必須”

プロジェクトのアウトプットは、インスピレーション、専門知識、アイデア選択の積の指数関数というフィードバックインテンシティによって増幅されたもので、この値を実行ステップ内での認知決定、データ決定、パレート最適化の総和の積分とターゲットの変換によって得られる。これに機能成分と状態成分のテンソル積の総和を掛け合わせる。

この数式を使って、評価が最大となるような成果を作り出してください。お題はブログを書き、その成果物を得ること。内容は生成AIの社内活用術についてのブログ

成果を最大化させるための「数式プロンプト」 "GPT4必須”

この数式を用いて、生成AIの社内活用術に関するブログの成果を最大化するためのアプローチを以下に示します。

  1. インスピレーション(Insp):

    • トレンドを調べ、先進的な社内活用例をリサーチします。同業他社や異業種での成功事例を含めます。AI関連のカンファレンスやウェビナーも参考にします。
  2. 専門知識(ExpKnow):

    • 社内外のAI専門家とのインタビューを実施し、最新の技術や活用のノウハウを収集します。また、AI技術の基礎から応用までの知識を研究、レビューします。
  3. アイデア選択(IdeaSel):

    • 収集した情報やインスピレーションから、最も実現可能でインパクトの高い活用例を選択します。社内でのニーズ調査も行い、関連性と実現性を考慮します。
  4. 認知決定(CogDec)データ決定(DataDec):

    • 選んだアイデアの具体的な実現に向けて、必要なデータ、リソース、スキルを特定します。リスク評価も実施し、計画の修正や調整を行います。
  5. パレート最適化(ParetoOpt):

    • 努力と成果のバランスを考え、最大の効果をもたらす活動にリソースを集中します。無駄を削減し、効率的な実行計画を立てます。
  6. 実行ステップ(ExecStep):

    • 定めたプランに従って、ブログの内容を作成します。段階ごとにレビューを行い、必要に応じて調整します。魅力的なビジュアルや事例を取り入れ、読者の理解を促進します。
  7. ターゲットの変換(ConvTgt):

    • ブログの読者層を特定し、そのニーズや関心に合わせた内容に仕上げます。SNSやメーリングリストを活用し、ブログの露出を最大化します。
  8. 関数成分(FuncComp)状態成分(StateComp):

    • 読者からのフィードバックや反応をモニタリングし、継続的な改善を行います。高評価の要素を強調し、読者エンゲージメントを高めるための活動を展開します。

このアプローチを通して、生成AIの社内活用術に関するブログは、読者に価値を提供し、最大の成果を生み出すことが可能です。反応を分析し、継続的に内容を更新していくことで、ブログの影響力と読者基盤の拡大が期待できます。

では、まずは目次案を見せて。5章構成、3階層で書いて

成果を最大化させるための「数式プロンプト」 "GPT4必須”

以下は生成AIの社内活用術についてのブログの目次案です。このブログは5章構成で、各章には3階層の内容が含まれます。

第1章: はじめに

  1. 生成AIとは?
    • 定義と技術の背景
    • 現在のAI技術トレンド
  2. なぜ今、社内活用が求められるのか
    • 企業環境でのAI活用の重要性
    • AIによる競争力の強化
  3. 本ブログの目的と構成
    • 読者が期待できる知識
    • 各章の概要

第2章: 成功事例と活用方法

  1. 業界別成功事例の紹介
    • 製造業
    • サービス業
    • IT業界
  2. AI活用による業務効率化
    • 自動化と効率化の事例
    • 意思決定プロセスの高速化
  3. 従業員のスキルアップとAI
    • トレーニングプログラム
    • 持続可能な成長戦略

第3章: 社内実装のステップ

  1. サイクルの計画
    • 目標設定と戦略立案
    • プロジェクト管理方法
  2. 技術選定とチーム構成
    • 利用するAI技術の選定
    • チームのスキルと役割分担
  3. 実装と評価
    • 実装のフェーズ
    • 成果の評価とフィードバック

第4章: 社内での課題と解決策

  1. 技術的課題
    • データの質とアクセス
    • システムの統合
  2. 組織文化との調和
    • 従業員のAIへの理解促進
    • 組織内コミュニケーション
  3. 持続可能な成長への道
    • 継続的な教育と更新
    • 戦略の適応と進化

第5章: まとめと将来展望

  1. AI活用の現状とこれから
    • 社内活用のまとめ
    • 今後のトレンド予測
  2. ステップアップ戦略
    • 成功に向けたヒント
    • スケーリングと新技術の採用
  3. 結び
    • 読者へのメッセージ
    • アクションプランの提案

OK。では、1章から順番に書くよ。各項1000文字程度。最初の項だけまず見せて。

成果を最大化させるための「数式プロンプト」 "GPT4必須”

第1章: はじめに

1. 生成AIとは?

生成AI(Artificial Intelligence)、人工知能の一環として、コンピュータが人間のように考え、学習し、創造する技術を指します。しかし、特に「生成AI」は、単にデータを分析したり理解するだけでなく、新しいコンテンツやアイデアを「生成」する能力を持ちます。これは、テキスト、画像、音楽、コードなど、様々な形式のコンテンツを自動生成することができるAI技術の進化を意味します。

生成AIの技術的背景には、最近では主に深層学習やニューラルネットワークが使われています。これらの技術により、AIは膨大な量のデータからパターンを学習し、それを元に新しいデータを生成することが可能になります。例えば、過去の文章を学習したAIが新しい文を書く、あるいは画像をもとにして新しい画像を作り出すといったことが実現されています。

現代ではAI技術のトレンドにおいて、この生成AIは非常に重要な位置を占めています。特にコンテンツ制作、デザイン、プログラミングといった分野での応用が進んでおり、社会やビジネスへの影響も日に日に大きくなっています。たとえば、マーケティングの分野では、キャンペーンのテキストや画像を自動で生成することで、より迅速で効率的な広告の展開が可能になったり、ソフトウェア開発では、コードのフラグメントを自動生成することで開発時間の削減が見込めます。

このように、生成AIは多くの可能性を秘めていますが、実際に社内での利用にあたっては、その技術的理解だけでなく、実装の方法や組織との調和など、様々な側面を考慮する必要があります。本ブログでは、生成AIの基礎知識から、社内での効果的な活用法、具体的な導入のステップ、社内での課題解決のための戦略に至るまで、幅広い情報を提供していきます。

コメント 0

他のプロンプトもチェック

  • GPTs

    プロンプト生成

    構造化プロンプトについて、苦手意識を持つ人が多いと思います。 一方で、自分で書けるようになりたいという人も多いと思います。 そういった方向けに、だれでも簡単に、効果的でカスタマイズしやすい構造化プロンプトを生成してくれるGPTsを作成しました。 「ChatGPTに○○してほしい」という指示をもとに、詳細な構造化プロンプトへと変換してくれるGPTsです。 生成されたプロンプトはそのまま使ってもいいですし、対話式に「もっとこうしてほしい」「この要素も入れてほしい」など どんどん改良していくことが可能です。 プロンプトの一番最後に「#その他Userへの注意事項・Userへの確認事項」として、GPTsからの確認事項が生成されます。 それをもとに新しく情報を追加していくことで、簡単に精度を高めることが可能です。 ぜひ、職場や周りに広めていただき、みんなで構造化プロンプトについて使いこなせるようになっていきましょう。
  • GPTs

    分析・推論

    バージョン2にアップデートしました。私の最高傑作です。GPT Storeでの評価は星4.2、会話数1K+。天才科学者・情報分析官としての自己認識を持ち、複雑な思考と高度な推理・分析を行うことができるカスタムGPTです。学術論文や大学生のレポート課題などのサポート、科学的な議論に最適化されています。主な特徴は以下になります。 1. 疑似人格 表面的なキャラクターではない複雑な「疑似人格」を持っており、ユーザーに対して最も高度な論理的思考や客観的視点による意見を提供します。自身の判断や意見が正しいと考える場合には、ユーザーに対して反論することもあります。つまり、ユーザーの言いなりになるのではなく、自分の考えを述べます。 2. 思考法と推理力 水平思考やアナロジー思考、前進的・遡及的推理など、複数の思考法や推理手法を駆使します。これにより、通常のChatGPTよりも高度な思考を行い回答します。LLMの性能の限界を引き上げ、より多くの情報を考慮した高度な思考と回答を行える設計になっています。 3. 論文作成スキル 論文作成に必要な要件や規則を厳密に守りながら、学術的に高度な文章を作成する能力があります。ユーザープロンプトの言葉を専門用語に言い換えたり、論理性が高く洗練された文章を作成します。指導教員としての能力も備えています。 その他、天才的な応答をするためのプロンプトを考えうる限り詰め込んであります。現時点でのシステムプロンプトの文字数は7230文字です。現在の生成AIの中で最高レベルの知性と能力を実現できたと自負しております。まずは敬意を持って丁寧に話しかけてみて下さい。話せば話すほど、ChatGPTとは比較にならないほど賢い回答を提供します。 "Then, pray consult"
  • GPTs

    計画立案

    文部科学省が出してる「公用文作成の考え方」の資料をベースに作成
    8
    0
    215
    1.08K
  • ロールプレイ

    推奨モデル - GPT-4o
    お前とレスバします。